US009274864B2

az United States Patent (10) Patent No.: US 9,274,864 B2
Baptist et al. (45) Date of Patent: Mar. 1, 2016
(54) ACCESSING LARGE AMOUNTS OF DATA IN GO6F 11/00; GOGF 21/33; GOGF 3/06; GOGF
A DISPERSED STORAGE NETWORK 3/0604; GOGF 15/17331; GOGF 3/067; GOGF
11/1446; GOGF 2211/1028; HO4L 63/0823;
(75) Inventors: Andrew Baptist, Chicago, IL. (US); Ilya HO4L 9/0863; HO4L 9/3263; HO4L 9/0869;
Volvovski, Chicago, IL (US); Greg HO4L 2209/04; HO4L 9/085; HO4L 2209/34;
Dhuse, Chicago, IL. (US); Wesley HO4L 9/321
Leggette, Chicago, IL. (US); Jason K. USPC ...covvevve 714/763, E11.034; 709/238, 226

Resch, Chicago, IL (US) See application file for complete search history.

(73) Assignee: International Business Machines (56) References Cited

Corporation, Armonk, NY (US)
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.

(Continued)
(22) Filed: Aug. 17,2012 Walraed-Sullivan, Meg., et al., “ALIAS: Scalable, Decentralized
. L. Label Assignment for Data Centers,” SOCC’11, Oct. 27-28, 2011,
(65) Prior Publication Data Cascais, Portugal *
US 2013/0086448 Al Apr. 4,2013 (Continued)

Related U.S. Application Data Primary Examiner — Albert Decady

(60) Provisional application No. 61/542,923, filed on Oct. Assistant Examiner — Kyle Vallecillo
4,2011. (74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison
(51) Int.CL

HO3M 13/05 (2006.01) (57) ABSTRACT
GOGF 11/00 .(2006'01) A method begins by a dispersed storage (DS) processing
(Continued) module obtaining a plurality of data objects for storage in a
(52) US.Cl dispersed storage network (DSN) and determining one or

more common data object aspects of a data object of the
plurality of data objects. The method continues with the DS
processing module disperse storage error encoding at least a
(2013.01); HO4L 9/0863 (2013.01); HO4L portion of the data object to produce a set of encoded data
9/0869 (2013.01); HO4L 9/321 (2013.01); slices and generating a set of DSN addresses for the set of

HO4L 9/3263 (2013.01); HO4L 63/0823 encoded data slices, wherein each of the set of DSN addresses

CPC GO6F 11/00(2013.01); GO6F 3/06 (2013.01);
GO6F 11/1076 (2013.01); HO4L 9/085

(2013.01); includes a field referencing the one or more common data
(Continued) object aspects. The method continues with the DS processing
. . . module outputting the set of encoded data slices for storage in
(58) Field of Classification Search the DSN based on the set of DSN addresses.
CPC GO6F 11/1076; GO6F 11/1008; GO6F
11/1068; GOGF 11/1044; GOG6F 15/173; 18 Claims, 10 Drawing Sheets

DS processing module 34 [Source name 35
[vault 1D T vaultgen Jresv | filein |

<« gateway module 28 -

> data object 40

User
o /
| o | P

Object

name 88 access module 80 rYT)

data
object 40 Slice name 37
| Vault

Universal Routing Information Specific

[dmodue sz] Slice index_| Vault 1D | Vaultgen | resv [Data name

slice name Slice name

error coded data | ¢ ¢ o [error coded data
slice 1_142 slice 1_X 44

slice name . Slice name

S3epUl

storage module 84 error coded data error coded data

sicev 126 | **®| slicev x28

—
[error coded sata silce 1x 24,

| —
error coded data sice 1.142 |~ |

slice name slice name

error coded data sice Y_1 45 ervor coded data slice Y.X 48

DSnet interface 32

US 9,274,864 B2
Page 2

(51) Int.CL

HO4L 9/32
HO4L 29/06
HO4L 9/08
GO6F 3/06
GO6F 11/10
GO6F 21/33
GO6F 11/14
GO6F 15/173

(52)
CPC ...

(56)

5,463,765
5,485,474
5,774,643
5,802,364
5,809,285
5,890,156
5,987,622
5,991,414
6,012,159
6,058,454
6,128,277
6,175,571
6,192,472
6,256,688
6,272,658
6,301,604
6,356,949
6,366,995
6,374,336
6,415,373
6,418,539
6,449,688
6,567,948
6,571,282
6,609,223
6,718,361
6,760,808
6,785,768
6,785,783
6,826,711
6,879,596
7,003,688
7,024,451
7,024,609
7,080,101
7,103,824
7,103,915
7,111,115
7,140,044
7,146,644
7,171,493
7,222,133
7,240,236
7,272,613
7,636,724
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2004/0024963
2004/0122917
2004/0215998
2004/0228493

U.S. CL

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2013.01)
(2006.01)
(2006.01)

GO6F 3/0604 (2013.01); GO6F 3/067
(2013.01); GOGF 11/1446 (2013.01); GO6F

15/17331 (2013.01); GOG6F 21/33 (2013.01):
GOGF 2211/1028 (2013.01); HOAL 2209/04
(2013.01); HO4L 2209/34 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

A * 10/1995
A 1/1996
A 6/1998
A 9/1998
A 9/1998
A 3/1999
A 11/1999
A 11/1999
A 1/2000
A 5/2000
A 10/2000
Bl 1/2001
Bl 2/2001
Bl 7/2001
Bl 8/2001
Bl 10/2001
Bl 3/2002
Bl 4/2002
Bl 4/2002
Bl 7/2002
Bl 7/2002
Bl 9/2002
B2 5/2003
Bl 5/2003
Bl 8/2003
Bl 4/2004
B2 7/2004
B2 8/2004
B2 8/2004
B2 11/2004
Bl 4/2005
Bl 2/2006
B2 4/2006
B2 4/2006
Bl 7/2006
B2 9/2006
B2 9/2006
B2 9/2006
B2 11/2006
B2 12/2006
B2 1/2007
Bl 5/2007
B2 7/2007
B2 9/2007
B2 12/2009
Al 5/2002
Al 11/2002
Al 1/2003
Al 2/2003
Al 4/2003
Al 5/2003
Al 2/2004
Al 6/2004
Al 10/2004
Al 11/2004

Kakuta et al.c...... 714/6.12
Rabin

Lubbers et al.
Senator et al.
Hilland
Rekieta et al.
Lo Verso et al.
Garay et al.
Fischer et al.
Gerlach et al.
Bruck et al.
Haddock et al.
Garay et al.
Suetaka et al.
Steele et al.
Nojima
Katsandres et al.
Vilkov et al.
Peters et al.
Peters et al.
Walker

Peters et al.
Steele et al.
Bowman-Amuah
Wolfgang
Basani et al.
Peters et al.
Peters et al.
Buckland
Moulton et al.
Dooply
Pittelkow et al.
Jorgenson
Wolfgang et al.
Watson et al.
Halford
Redlich et al.
Peters et al.
Redlich et al.
Redlich et al.
Shu et al.
Raipurkar et al.
Cutts et al.

Sim et al.

de la Torre et al.
Butterworth et al.
Ulrich et al.
Gadir et al.
Meffert et al.
Watkins et al.
Shu

Talagala et al.
Menon et al.
Buxton et al.
Ma et al.

2005/0100022 Al 5/2005 Ramprashad
2005/0114594 Al 5/2005 Corbett et al.
2005/0125593 Al 6/2005 Karpoff et al.
2005/0131993 Al 6/2005 Fatula, Jr.
2005/0132070 Al 6/2005 Redlich et al.
2005/0144382 Al 6/2005 Schmisseur
2005/0229069 Al 10/2005 Hassner
2006/0047907 Al 3/2006 Shiga et al.
2006/0136448 Al 6/2006 Cialini et al.
2006/0156059 Al 7/2006 Kitamura
2006/0224603 Al 10/2006 Correll, Jr.
2007/0079081 Al 4/2007 Gladwin et al.

2007/0079082 Al
2007/0079083 Al
2007/0088970 Al

4/2007
4/2007
4/2007

Gladwin et al.
Gladwin et al.
Buxton et al.

2007/0168634 Al* 7/2007 Morishitaetal. 711/170
2007/0174192 Al 7/2007 Gladwin et al.

2007/0214285 Al 9/2007 Auetal.

2007/0234110 Al 10/2007 Soran et al.

2007/0283167 Al 12/2007 Venters, III et al.

2008/0040505 Al* 2/2008 Brittoetal. ... 709/238
2008/0065827 Al* 3/2008 Byrneetal. 711114
2008/0183975 Al* 7/2008 Fosteretal. ... 711/153

2009/0094251 Al
2009/0094318 Al
2010/0023524 Al

OTHER PUBLICATIONS

4/2009
4/2009
1/2010

Gladwin et al.
Gladwin et al.
Gladwin et al.

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Rabin; Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance; Journal of the Association for Computer
Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
Matching Rules; IETF Network Working Group; RFC 4517, Jun.
2006, pp. 1-50.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006; pp. 1-14.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516, Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
resentation of Search Filters; IETF Network Working Group; RFC
4515; Jun. 2006; pp. 1-12.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
Information Models; IETF Network Working Group; RFC 4512; Jun.
2006; pp. 1-49.

Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Working
Group; RFC 4513; Jun. 2006; pp. 1-32.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map; IETF Network Working Group; RFC 4510,
Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.

US 9,274,864 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-

age Systems; 13th IEEE International Symposium on High Perfor-
mance Distributed Computing; Jun. 2004; pp. 172-181.

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

* cited by examiner

US 9,274,864 B2

Sheet 1 of 10

Mar. 1, 2016

U.S. Patent

0T Wa1sAS SUOndwod

T'Ol4

8T Mun
SuiBeuew sq

97 2400
Sunndwoo

8% X A @21s D3

PP X T 921503

€€ 2oeloNUl |

[5 x A20s03 |@ee | 571 A201s03 |

¥ yHomiau

A

0Z 3un 3uissasoud
Ayu8aul a8esols

I

I

I

| g9z 202
_ Sunndwod

7€ 20epRUI NST

A A

N

JARERIE

° °

° ™

° °

[77 x 1201503 |@ee | ZTF1 T o015 3 |
— YY)
7T @01aap 4asn
Y Y

OF 20ep103Ul |« V“ 0F a0e21Ul _ _ ZE 9284491U1 NS(_

gz 2400
Sunndwoo

0% A20|q eiep
Jo/QRE 3|y elep

¢

¢

_ 7€ Suissaooud sq _

97 2402 Sunndwod

9T uun duissaooid sQq

| Z€e0rpauinsa |
A

Y

¥€ Buissanoad
sda

9¢ 2402 8unndwod

2T 221A8p Jasn

US 9,274,864 B2

g7 9|npow §Z a|npow ZZ @|NpoW aoe4a3ul 0Z a|npow g9 a|npow 99 a|nhpow
20eMaIUl NSA 90ep9IU] QH ysey 9BJ493U] JJoMIdU 20eHaI] YEH 2oBJIDIUI gSN

Sheet 2 of 10

Mar. 1, 2016

U.S. Patent

{ t 4 f

YYY YYY

S 1un Suissasoud
solydel3 ospia

_
_
|
_
| g5 —
_ 3081l 1Id 79 sold
| INOH
_ A
| ¢
_ Y —
— — 79 9|npow

_ gGJojosuo00 | | Q09@oepa |
_ ol < ol - 20BI=1ul
| 01D O
_
_
_ — — —

¥S Adowaw 7G J9||04u0d 0G a|npow
_ ulew N Aowaw N Suissaooud
_ A
_
| Y
_
_
_
_

US 9,274,864 B2

Sheet 3 of 10

Mar. 1, 2016

U.S. Patent

€ aweu 224nog

37 XA 921|S B1Ep Papod J0IB ‘Old 9y T~ A 921|S B1EP PBPOI JOLID
dweu 2I|S aweu 3I|S
e ¢ ¢
S _ 7€ 92BLI93U1 18US [_ S
— [] — []
7 X T 921|S BI1Ep POpOd JOdIs] eee | ¥ 17T 221|S EIEP PBPOI JOLID
aweu 31|S [— aweu 32l|s
By X A9JIS coe 97 T A ®0ls
Elep pop0d Jodle Elep pop0d Jodlo _ ﬂ 3|hpow OMG._O“_.W _
aweu 3l|s ® aWeu 32|S A
°
— — . — — /
vy X 190ls eoe cr T 1T 30ls
e1ep pPspod 40113 elep papoo J041D
aweu IS aweu 8d||S v
_ 78 s|npow pu3 _
aweu eyeq | AsaJ | uaBynea | alynea | xspul a21s
2yioads uonew.oju| Sunnoy |esJaAlun 0
nea 1 } ! | !
/€ sweu 321|§ 0% 102lqo
— elep
76 A lusw3das elep 2
(1Y) _ 08 2|npow ssadde _ muwuwﬂhwc
06 T Juswsas exep A)
G aWeu 324nos wwmﬂ_
= Y 8
0¥ 103[q0 elep — G| €-—>
— 87 9|npow Aemaled m >
<

alsiy

_ ASD) _ uas 1jnep

al unean

€ aWeu 92Jnosg

¥€ o|npow Buissadoud sg

US 9,274,864 B2

Sheet 4 of 10

Mar. 1, 2016

U.S. Patent

¥ 9231|s B1ep 07

€ 90l|s e1ep 9]

7 90lIs e1Rp O3

T 92l|s e1ep D7

KIKIEKIE

KKK

KIKIKIEK

"a{"a['a] |

KIKIKIE

‘af‘a|a] |

KIKIKIEK

‘a{'a[’a] |

&5

76 wawgas eiep papoous Jo sNUq 7E

Z8 s|hpow plig

6/ 19915 <

— — _
68 Joiendiuew — — €8 Jore|ndiuew

<> <> | 1321|S- <> | :
_ -9p 321|s-150d £8 AN59p a8 19p0oosp J > -9p 921|5-a.ud |
! | |
_ — _
| €7 1un |0J3U0D pingaul _

_

_ X 821|s e1ep D3 _ “ _ _
® T8 Jo1e|ndiuew — — §Z lore|ndiuew |

° <> Fan. BERITES Japoou ’
P4 _ 9ol|s-1sod 6L 499l L1 19podU® 9o1|s-a.d _
_ T 201Is €3ep 33 _ _]

¥6 1uswdas eyep papoous _ _ Z6-06 Waw3as erep

US 9,274,864 B2

Sheet 5 of 10

Mar. 1, 2016

U.S. Patent

80T

nun

EVIRCTRIEY

A
FIT so01|s 9

91T sSassaippe NSd H

\

80T uun
Suiaalal

R E—

7

ZLT Spdodal
<

81T s1oodse — >

9TT sassaJdppe NSa

% ?H S921|S

Z¢ AMowsw NSQ

H CLT Sp4odad

% 8TT s1o9dse

Y

1adse

30T oseqeiep

ejep uowwod

FTT s901Is

9T sassaJppe NSQ

7ot

1un

Sunniden

e

A
A
gTT sossadppe NS | #TT saolis
11T spJooau
$0T mun
3uunmdes ZTT SpJodal

0TT s12lqo e1ep

0TT sw2lqo eyep

Z0T SHMOMI2U UoHEIUNWIWOD

US 9,274,864 B2

Sheet 6 of 10

Mar. 1, 2016

U.S. Patent

LSV Al e1ep jo ysey

00:6-00:8 9T AINf ZT0T

[4

00:6-00:8 9T AINf ZT0T

00:6-00:8 9T AInr 2102

00:8-00:£ 9T AInr ZT0T

00:8-00:£ 9T AInr 210T

g

—AlN]H NN AN~

v
g
v
v

8ET Q1 walqo e1ep

g€ pI3y 109dse 123[qo erep

FET J2quinu 103[qo 4o §ZT sweu 324nos

8T
Jaquinu
swdss

PET
Jaqunu | ZET ua8
13[qo

0ET
dl ynea

ZZT Xapul 921|s

9¢T =2WweuU 32nos

#¢T 2Weu 22JN0s }neAa

0CT 2Weu 3l|s

US 9,274,864 B2

Sheet 7 of 10

Mar. 1, 2016

U.S. Patent

ao ‘oid
90T 9seqelep 102dse ei1ep UOWWOoD
99T p4023J A
_| |||||||||||||||||||| a
_ 897 109(qo elep I
_ ST s|npow pa10NnJ43su0da4 |
75T $901[S _ “1 spooop "
| !
_
I ST o|npow spJodad [
_
- — & & _
\ 44 _ 79T _
Jowsw sassaJppe NSd |
NSd I Y _
[(— — — —
_ 0ST anpow | 99T ainpow | ¥PT sinpow | | Z0T SJomiau
| ssalppe /Q 1oadse - 1s23ul 1 5eT uoLEeIUNW WO
_ spadse I s1slgo
— gsT | e1ep
791 sassaippe NSd
_ 7 y ysSwoloeep|
— I
< _ a1 2INPOW (g — SVT s|npow spodus |
Z9T Sa2|S | indino €971 sadl|s 8Vl sInp P
_ _
| ZvT sinpow sg |
IIIIIIIIIIIIIIIIIIIII d
OFT 201A3p Sunndwod

US 9,274,864 B2

Sheet 8 of 10

Mar. 1, 2016

U.S. Patent

sassalppe
NSQ O 195 MaU 243 UO paseq JJomiau
o3eJ03s postadsip 2yl ul 93e101s 40}
S9JI|S BB PaPOIUD JO 135S Mau ayj indino

G k

S90I[S B1EP PIPOIUS JO 195 MU 3}
Joj sassaippe NS JO 19S mau e aiesauad

o k

S91|S

R1EP PPOIUD JO 39S MdU B 3dnposd 0}
109(qo eiep paionJisuodads 8y} jo uondod
B 1SBD| 18 BpODUS J0Lid 28el0)s as1adsIp

T k

s1oadse
109[qo e1ep UOWWED [eUCIPPR AJUBP!
0} 102[qo erep pa1onJisuodal 2y} azAjeue

w k

103/q0 e1Bp P31INJISUOIDI
e 2onpold 01 103[qo eiep aya jo
uouJod Yoes Joj S3I1|S B1EP PIPOJUB JO 195
83 JO Jaguwinu p|oysaJlyl apoIsp e apoIap

7o X

aseqelep adse 109(qo elep UOWWOD
B Ul 302[q0o ejep ay} Joj plodad B 333D

o x

ydomiau a8elols passadsip e ul 93el03s
10} S221|5 1P P2PO2U3 O 13s aY3 Indino

2 x

s102dse 102[qo el1ep UOWWOD 3J0W 10 U0
2U31 SuiousJaa4 S9JI|S B1EP PIPODUS JO 19S
B} Joj sassalppe NS Jo 19S e 21eJ2uUa8

[Yo]

ST A

S9DI|S B1EP PAPOIUD JO
195 e 2onpoud 01 103(qo e1ep ay3 jo uood
B 1SED| 1B BPOJUD J04JD 23RI0)S 3SIadSIp

i x

103[qo ejep e jo syradse 109(qo
B1EP UOLIWOD 3JOW JO DUO BUIWIDIRP

o~
i

2 A

s103[qo eiep jo Ayljeanid e uteiqo

O
—

ot A

US 9,274,864 B2

Sheet 9 of 10

Mar. 1, 2016

U.S. Patent

90T @seqgeiep 1o2dse eyep UOWWOD
8T¢ spJooa A 91¢ s1adse
|||||||||||||||||||||| 1
_ Y _
“ 50 _
_ a|npow aseqelep 10adse |
_
_ 577 A |
SpJodaJ
_ ¥ _
80¢C °|npow —
| sssalppe v0Z o|npow _
I eiousg € s10adse 123]35 _
| NSQ =1 gT¢ s1oadse _
| 44
| SeSS®JPPE NSA _ —
_ < _ T
| 0TZ o|hpow [| === o015 Aowsw
_ $9J1|S DASLIIB | > NSd
_ _ 0T¢ sossalppe Nsa |
_ CTC SRS \y |
e _ | - |
-~
spalqo ejep _ 3|npow apodap “
_ !
| Z0¢ @npow s
IIIIIIIIIIIIIIIIIIIII d
00¢ 221n8p Sunndwod

US 9,274,864 B2

Sheet 10 of 10

Mar. 1, 2016

U.S. Patent

sassaippe NSa
40 5135 Jo Ajjesn|d ay3 40 yoea Joy NSQ

9} WO} SAOI|S BIEP PRPOIUR JO JagWINU
ploysady3: 2podap e ises| 1e anslilal

™~

e A

133([qo e1ep
puooas e jo uonJdod e 1sea| 1e adnpotdal
01 S3J[S B1EP PRPOIUD PUOIAS JO JBqUINU
pIoYSa4y3 3po23p e 15e3| 3k 3yl spodap

sassalppe
NS 40 s19s Jo Ayljedn|d e 21e49u33

(=]
o

o7 A

5]

434 A

sassalppe NSa
40 39S pUO3s Y3 Uo paseq NS Y3 Woly
$92I|S B1EP PRPODUD PUOISS JO Jaquinu
ploysady3} 2podap e 1ses| je ansLlal

palgo
elep 154y e Jo uonod e 1ses| 1e adhpoddal
01 S3J1|S elep papoIua Jo Jaqunu
PIOYSaJyl 2p0Iap e 1Ses| 1e 3yl 2p0dIsp

[0}
o~

€

A

= x

sassalppe NS 4O 1S puodas e aielauad

sassalppe NSQ 0 13s oY1 uo paseq NSA
B WOJJ S32I|S B1EP PaPOIUS JO Jagwinu
ploysaJtyl 3podap e 1ses| 1e ansl1d

0|
o

87 A

O
o
o

A

123(qo eiep 154y ay3 jo suonsod jo Ayjesnid
91 wouJy 393[qo e1ep 1s4y ay1 aonpoldal

sassalppe NS Jo 12s e 21e1auad

<t
o

vee A

te]

57 A

103[qo elep 1s4y
2y} Jo suouod jo Ayjesn|d e sonpoudad
0} $assaJppe NS 40 $19s Jo Aljedn|d aya
JO UYDED JOJ SIDI|S BIEP PRPOIUS JO JaqWNU
PIOYSa4y1 POI3P E 1SE3| 1B 34l 9p0I3P

spJooal
}013s e Ajquapi o1 s1oadse 103[qo erep

UOWWOD P33193]3S 3Y1 UO paseq aseqeiep
10adse 109[qO e1ep UOWWOD B SSAVJE

o
o
o~

A

e X

s1oadse
129(qO k1P UOWLWIOD 2J0W JO BUO 19|35

= A

US 9,274,864 B2

1
ACCESSING LARGE AMOUNTS OF DATA IN
A DISPERSED STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuantto 35 U.S.C. §119(e) to U.S. Provisional Application
No. 61/542,923, entitled “Storing Passwords in a Dispersed
Credential Storage System” filed Oct. 4, 2011, which is incor-
porated herein by reference in its entirety and made part of the
present U.S. Utility Patent Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under
Contract No. 2009*0674524*000 awarded by the Central
Intelligence Agency. The Government has certain rights in the
invention.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not applicable

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such com-
puting systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and, using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-
ing the Internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming. etc.).

Eachtype of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally, which increases the
demand on the storage function of computers.

10

15

20

25

30

35

40

45

50

55

60

65

2

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates
what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,
memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller. Data is stored in a
memory device in accordance with the data storage format
such that any subsequent updates to the data require overwrit-
ing the stored data in the memory device. The rewriting of
updated data may be costly in terms of utilization of the
interfacing between the computer’s processing function and
the storage system.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g.,
n-1=capacity). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with a storage capacity
ofn-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,
which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases
the chances of unauthorized access. Further, as the amount of

US 9,274,864 B2

3

data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the present invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
present invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the present invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the present
invention;

FIG. 6A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 6B is a diagram illustrating an example of a source
name structure in accordance with the present invention;

FIG. 6C is a diagram illustrating an example of an object
number structure in accordance with the present invention;

FIG. 6D is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 6E is a flowchart illustrating an example of storing
large amounts of data in accordance with the present inven-
tion;

FIG. 6F is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention; and

FIG. 6G is a flowchart illustrating an example of retrieving
data objects having a common aspect in accordance with the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,
one or more of a second type of user devices 14, at least one
distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).

Each of the user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-

10

15

20

25

30

35

40

45

50

55

60

65

4

sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
33. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 33 includes software and/or hardware to support one or
more communication links via the network 24 indirectly and/
or directly. For example, interface 30 supports a communica-
tion link (wired, wireless, direct, via a LAN, via the network
24, etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32
supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage integrity
processing unit 20. As yet another example, interface 33
supports a communication link between the DS managing
unit 18 and any one of the other devices and/or units 12, 14,
16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing unit 18 creates and
stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

US 9,274,864 B2

5

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices” and/or units’ activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing unit
16 via its interface 30. As will be described in greater detail
with reference to FIG. 2, the interface 30 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or
a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block
40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding dis-
persal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data segments.
For example, the DS processing 34 may partition the data file
38 and/or data block 40 into a fixed byte size segment (e.g., 2"
to 2” bytes, where n=>2) or a variable byte size (e.g., change
byte size from segment to segment, or from groups of seg-
ments to groups of segments, etc.).

For each ofthe Y data segments, the DS processing 34 error
encodes (e.g., forward error correction (FEC), information
dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of
error coded (EC) data slices 42-48, which is represented as X
slices per data segment. The number of slices (X) per seg-
ment, which corresponds to a number of pillars n, is set in
accordance with the distributed data storage parameters and
the error coding scheme. For example, ifa Reed-Solomon (or
other FEC scheme) is used in an n/k system, then a data
segment is divided into n slices, where k number of slices is
needed to reconstruct the original data (i.e., k is the thresh-
old). As a few specific examples, the n/k factor may be 5/3;
6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16 creates
aunique slice name and appends it to the corresponding slice
42-48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory

30

40

45

6

addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the
network 24. For example, the DSN interface 32 may utilize an
internet protocol (e.g., TCP/IP, etc.) to packetize the EC slices
42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48 is
dependent on the distributed data storage parameters estab-
lished by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi-
cally diverse locations to improve data storage integrity and
security.

Each DS unit 36 that receives an EC slice 42-48 for storage
translates the virtual DSN memory address of the slice into a
local physical address for storage. Accordingly, each DS unit
36 maintains a virtual to physical memory mapping to assist
in the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10 error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the cor-

US 9,274,864 B2

7

rupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial
bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10O device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
the DSnet interface 32 or the interfaces 68 and/or 70 may be
part of user device 12 or of the DS processing unit 16. The DS
processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module
78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a transac-
tion message, a user device identity (ID), a data object iden-
tifier, a source name, and/or user information. The gateway
module 78 authenticates the user associated with the data
object by verifying the user ID 86 with the managing unit 18
and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units (X=16
wide). The operational parameters may include an error cod-
ing algorithm, the width n (number of pillars X or slices per
segment for this vault), a read threshold T, a write threshold,
an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, par-
allelism settings, and/or other parameters that may be used to
access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data. For instance, the gateway
module 78 determines the source name 35 of the data object
40 based on the vault identifier and the data object. For
example, the source name may contain a file identifier (ID), a

5

10

15

20

25

30

35

40

45

50

55

60

65

8

vault generation number, a reserved field, and a vault identi-
fier (ID). As another example, the gateway module 78 may
generate the file ID based on a hash function of the data object
40. Note that the gateway module 78 may also perform mes-
sage conversion, protocol conversion, electrical conversion,
optical conversion, access control, user identification, user
information retrieval, traffic monitoring, statistics generation,
configuration, management, and/or source name determina-
tion.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in accor-
dance with a data storage protocol (e.g., file storage system, a
block storage system, and/or an aggregated block storage
system). The number of segments Y may be chosen or ran-
domly assigned based on a selected segment size and the size
of the data object. For example, if the number of segments is
chosen to be a fixed number, then the size of the segments
varies as a function of the size of the data object. For instance,
if the data object is an image file of 4,194,304 eight bit bytes
(e.g., 33,554,432 bits) and the number of segments Y=131,
072, then each segment is 256 bits or 32 bytes. As another
example, if segment size is fixed, then the number of seg-
ments Y varies based on the size of data object. For instance,
if the data object is an image file of 4,194,304 bytes and the
fixed size of each segment is 4,096 bytes, then the number of
segments Y=1,024. Note that each segment is associated with
the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-48.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh-
old for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number and the vault ID and, as such, is unique for each pillar
(e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

US 9,274,864 B2

9

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-
tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which of
the DS storage units 36 will store the EC data slices based on
a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS storage
unit attributes may include availability, self-selection, perfor-
mance history, link speed, link latency, ownership, available
DSN memory, domain, cost, a prioritization scheme, a cen-
tralized selection message from another source, a lookup
table, data ownership, and/or any other factor to optimize the
operation of the computing system. Note that the number of
DS storage units 36 is equal to or greater than the number of
pillars (e.g., X) so that no more than one error coded data slice
of'the same data segment is stored on the same DS storage unit
36. Further note that EC data slices of the same pillar number
but of different segments (e.g., EC data slice 1 of data segment
1 and EC data slice 1 of data segment 2) may be stored on the
same or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identifies
aplurality of DS storage units based on information provided
by the grid module 82. The storage module 84 then outputs
the encoded data slices 1 through X of each segment 1
through'Y to the DS storage units 36. Each of the DS storage
units 36 stores its EC data slice(s) and maintains a local
virtual DSN address to physical location table to convert the
virtual DSN address of the EC data slice(s) into physical
storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing unit 16, which
authenticates the request. When the request is authentic, the
DS processing unit 16 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSnet interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
a user device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of write operation, the pre-slice manipulator
75 receives a data segment 90-92 and a write instruction from
anauthorized user device. The pre-slice manipulator 75 deter-
mines if pre-manipulation of the data segment 90-92 is
required and, if so, what type. The pre-slice manipulator 75
may make the determination independently or based on
instructions from the control unit 73, where the determination
is based on a computing system-wide predetermination, a
table lookup, vault parameters associated with the user iden-

20

35

40

45

55

10

tification, the type of data, security requirements, available
DSN memory, performance requirements, and/or other meta-
data.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
92 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 90-92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 90-92, the same encoding algo-
rithm for the data segments 90-92 of a data object, or a
combination thereof.

The encoded data segment 94 is of greater size than the data
segment 90-92 by the overhead rate of the encoding algorithm
by a factor of X/T, where X is the width or number of slices,
and T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 90-92. For
example, if X=16 and T=10, then the data segment 90-92 will
be recoverable as long as 10 or more EC data slices per
segment are not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 90-92. For
example, if the slicing parameter is X=16, then the slicer 79
slices each encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-

US 9,274,864 B2

11

ment 90-92. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment 94 includes thirty-two bits, bytes, data words,
etc., but may include more or less bits, bytes, data words, etc.
The slicer 79 disperses the bits of the encoded data segment
94 across the EC data slices in a pattern as shown. As such,
each EC data slice does not include consecutive bits, bytes,
data words, etc. of the data segment 94 reducing the impact of
consecutive bit, byte, data word, etc. failures on data recovery.
Forexample, if EC data slice 2 (which includes bits 1,5,9, 13,
17, 25, and 29) is unavailable (e.g., lost, inaccessible, or
corrupted), the data segment can be reconstructed from the
other EC data slices (e.g., 1, 3 and 4 for a read threshold of 3
and a width of 4).

FIG. 6A is a schematic block diagram of another embodi-
ment of a computing system that includes communication
networks 102, a plurality of capturing units 104, a dispersed
storage network (DSN) memory 22, a common data aspect
database 106, and a plurality of retrieving units 108. The
communication network 102 includes one or more of a wire-
less communication network, a wireline communication net-
work (public switched telephone network), an Internet, a
computing network, a data storage network, and a sensor
network. A capturing unit 104 of the plurality of capturing
units 104 may be implemented utilizing at least one of a
dispersed storage (DS) processing unit, a user device, a DS
unit, and a data ingestion processing module. The DSN
memory 22 includes a plurality of DS units and may include
the common data aspect database 106. The common data
aspect database 106 may be implemented utilizing at least
one of a database application, a database server, and one or
more DS units of the plurality of DS units.

The system is operable to capture millions of data objects
110 from the communication networks 102, encode the data
objects 110 to produce slices 114, store the slices 114 in the
DSN memory 22 in accordance with aspects 188, storing
records 112 of the storing in the common data aspect database
106, retrieve the slices 114 from the DSN memory 22 in
accordance with the aspects 188, and decode the slices 114 to
recover one or more data objects 110. The storing and retriev-
ing of the slices 114 includes generating DSN addresses 116
based on the aspects 118 and utilizing the DSN addresses 116
to access the DSN memory 22. The DSN addresses 116
include at least one of a slice name, a vault source name, and
a source name. Structure of the DSN addresses is discussed in
greater detail with reference to FIGS. 6B-C. Methods and
apparatus to utilize the aspects 118 to generate the DSN
addresses 116 is discussed in greater detail with reference to
FIGS. 6E-6G.

FIG. 6Bis adiagramillustrating an example of a slice name
structure 120 that includes a slice index field 122 and a vault
source name field 124. The slice index field 122 includes one
or more slice index entries corresponding to a pillar number.
The vault source name field 124 includes a source name field
126 and a segment number field 128. The segment number
field 128 includes at least one segment number entry corre-
sponding to a segment number of a data object being stored.
The source name field 126 includes a vaultidentifier (ID) field
130, a vault generation field 132, and an object number field
134. A segment number entry identifies a segment corre-
sponding to a common source name entry. For example,
sequential segment number entries 1-10 corresponds to a
given source name entry for storage of a data object that
requires 10 segments. The vault ID field 130 includes one or

30

35

40

45

50

12

more vault ID entries corresponding to the data object being
stored. The vault generation field 132 includes one or more
vault generation entries corresponding to a generation of each
vault being stored. The object number field 134 includes one
or more object number entries, wherein an object number
entry is associated with a data object being stored.

An object number entry may be generated as at least one of
the random number, a sequential number, a predetermined
number, and an aspect driven number. For example, an object
number entry for a first data object includes two aspects
including a first aspect that is shared in common with a second
data object and a second aspect that is unique to the first data
object. An object number entry for the second data object
includes the first aspect that is shared in common with the first
data object and a second aspect that is unique to the second
data object. Alternatively, a source name entry may be gen-
erated as an aspect driven number. A structure for entries of
the source name field 126 and the object number field 134 is
discussed in greater detail with reference to FIG. 6C.

FIG. 6C is a diagram illustrating an example of a structure
of'a source name field 126 or an object number field 134 that
includes at least to the aspect driven fields including a data
object aspect field 136 and a data object identifier (ID) field
138. Alternatively, the structure of the source name field 126
or object number field 134 may include more than two aspect
driven fields. The overall structure includes a plurality of
entries. Each entry of the plurality of entries includes a data
object aspect value for the data object aspect field 136 and a
corresponding data object ID value of the data object ID field
138. Each data object aspect value includes at least one of a
time window aspect, a destination identifier (ID) of the data
object, a source ID of the data object, one or more internet
protocol (IP) addresses associated with the data object, a
geographic location regarding the data object, data content
information of the data object (e.g., names, key words and/or
phrases, etc.), data size of the data object, a data object type
(e.g., video, text, bank transaction, etc.), a capturing unit ID
that obtained the data object, a collection identifier (ID), a
random number, and a vault ID (includes generation and/or
group affiliation). For example, a series of different data
objects written to a dispersed storage network (DSN)
memory within a common time period of Jul. 16, 2012 from
7:00 AM to 8:00 AM share a common data object aspect field
entry.

The data object ID field 138 includes one or more corre-
sponding data object ID entries. A data object ID entry
includes a unique value per data object utilizing a common
data object aspect field entry. Each data object ID may be
based on one or more of a random number, a previous data
object ID incremented by 1 or more, a previous data object ID
decremented by 1 or more, and a result of a deterministic
function (e.g., a hashing function) performed on a data name
of the data object. Each data object of a plurality of data
objects may be assigned a different data object ID when the
plurality of data objects share a common aspect is represented
by a common data object aspect field entry. For example, a
first data object is assigned a data object ID field entry of 1 and
a second data object is assigned a data object ID field entry of
2 when the first and second data objects share in the common
data object aspect field entry of Jul. 16, 2012 from 8:00 AM to
9:00 AM. The source name field 126 or object number 134
may be utilized by a dispersed storage (DS) unit to select a
memory device of a plurality of memory devices associated
with the DS unit for storage of an associated encoded data
slice. For example, the data object aspect field entry is utilized
to select a memory device and the data object ID field entry is
utilized to select an offset within the memory device. The

US 9,274,864 B2

13

method and apparatus of generation of the source name field
entry or object number field entry is discussed in greater detail
with reference to FIGS. 6D-6G.

FIG. 6D is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
140, communication networks 102, and a dispersed storage
network (DSN) memory 22. The computing device 140 may
be implemented as one or more of a capturing unit, user
device, a dispersed storage processing (DS) unit, a DS unit, a
DS managing unit, and a storage integrity processing unit.
The computing device 140 includes a DS module 142 and
may include a common data aspect database 106. Alterna-
tively, the common data aspect database 106 is implemented
within the DSN memory 22. The DS module 142 includes an
ingest module 144, an aspect module 146, an encode module
148, an address module 150, an output module 152, a records
module 154, and a decode module 156. The system is oper-
able to ingest a plurality of data objects 158 from the com-
munication networks 102 and facilitate storage of the plural-
ity of data objects 158 in the DSN memory 22. The facilitating
storage includes determining one or more common data
object aspects 160 of each data object 158, encoding a data
object to produce a set of encoded data slices 162, generating
a set of DSN addresses 164 referencing the one or more
common data object aspects 160, outputting the set of
encoded data slices 162 for storage in the DSN memory 22,
and creating a record 166 for the data object 158 in the
common data object aspect database 106.

The ingest module 144 obtains a plurality of data objects
for storage in the DSN memory 22. The obtaining includes
receiving, for each data object of the plurality of data objects,
one or more of the data object, a data name associated with the
data object, a data object identifier (ID) associated with the
data object, and a common data object aspect. The aspect
module 146 determines one or more common data object
aspects 160 of a data object of the plurality of data objects
158. A common data object aspect of the one or more com-
mon data object aspects 160 is an aspect shared by two or
more of the plurality of data objects 158. The common data
object aspect is one of a plurality of common data object
aspects that includes two or more of’ a time window aspect, a
destination identifier (ID) of the data object, a source ID of the
data object, one or more internet protocol (IP) addresses
associated with the data object, a geographic location regard-
ing the data object, data content information of the data object
(e.g., names, key words and/or phrases, etc.), data size of the
data object, a data object type (e.g., video, text, bank trans-
action, etc.), a capturing unit ID that obtained the data object,
and a vault ID (e.g., includes generation and/or group affili-
ation). The determining of the one or more common data
object aspects 160 may be based on one or more of receiving
at least one common data object aspect with a corresponding
data object, a query to a communication network of the com-
munication networks 102, an analysis, and a lookup based on
the data name.

The encode module 148 disperse storage error encodes at
least a portion of the data object to produce a set of encoded
data slices 162. A portion may include one or more data
segments. The address module 150 generates a set of DSN
addresses 164 for the set of encoded data slices 162. Each of
the set of DSN addresses includes a field referencing the one
or more common data object aspects 160. The address mod-
ule 150 generates a DSN address of the set of DSN addresses
by generating a slice index field, generating a data object
aspect field, generating a data object ID, and generating a
segment field regarding the at least a portion of the data
object. The output module 152 outputs the set of encoded data

25

40

45

55

14

slices 162 for storage in the DSN memory 22 based on the set
of DSN addresses 164. For example, the output module 152
generates a set of write slice requests that includes a set of
slice names of the set of DSN addresses 164 and the set of
encoded data slices 162. Next the output module 152 sends
the set of write slice requests to the DSN memory 22.

The records module 154 creates a record 166 for the data
object in the common data object aspect database 106. The
record 166 may include one or more of a data object identifier,
information regarding the one or more common data object
aspects (e.g., how many, which aspects), and a portions num-
ber indicating a number of portions constituting the data
object. The common data object aspect database includes a
plurality of records for at least some of the plurality of data
objects 158.

The system is further operable to store a plurality of por-
tions of each data object of the plurality of data objects 158.
When storing the plurality of portions of each data object, the
encode module 148 divides the data object into a plurality of
portions and disperse storage error encode the plurality of
portions to produce a plurality of sets of encoded data slices
162. The address module 150 generates a plurality of sets of
DSN addresses 164 for the plurality of sets of encoded data
slices 162. Each DSN address of the plurality of sets of DSN
addresses 164 includes a field referencing the one or more
common data object aspects 160. The output module 152
outputs the plurality of sets of encoded data slices 162 for
storage in the DSN memory 22 based on the plurality of sets
of DSN addresses 164.

The system is further operable to refresh storage of the data
object utilizing additional common data object aspects 160.
The refreshing includes the decode module 156 decoding a
decode threshold number of the set of encoded data slices 162
for each portion of the data object to produce a reconstructed
data object 168. The aspect module 146 analyzes the recon-
structed data object 168 to identify additional common data
object aspects. The encode module 148 disperse storage error
encode at least a portion of the reconstructed data object 168
to produce a new set of encoded data slices 162. The address
module 150 generates a new set of DSN addresses 164 for the
new set of encoded data slices 162. Each of the new set of
DSN addresses 164 includes a field referencing the one or
more common data object aspects 160 and the additional
common data object aspects. The output module 152 outputs
the new set of encoded data slices 162 for storage in the DSN
memory 22 based on the new set of DSN addresses 164.

FIG. 6E is a flowchart illustrating an example of storing
large amounts of data. The method begins at step 170 where
a processing module (e.g., of a capturing unit) obtains (e.g.,
receives, intercepts, captures, queries, retrieves, collects, etc.)
a plurality of data objects for storage in a dispersed storage
network (DSN). For example, processing module obtains
millions of data objects in a given time period from millions
of data object sources. The method continues at step 172
where the processing module determines one or more com-
mon data object aspects of a data object of the plurality of data
objects. A common data object aspect of the one or more
common data object aspects is an aspect shared by two or
more of the plurality of data objects. The method continues at
step 174 where the processing module disperse storage error
encodes at least a portion of the data object (e.g., a data
segment) to produce a set of encoded data slices.

The method continues at step 176 where the processing
module generates a set of DSN addresses for the set of
encoded data slices. Each of the set of DSN addresses
includes a field referencing the one or more common data
object aspects. The generating a DSN address of the set of

US 9,274,864 B2

15

DSN addresses includes generating a slice index field, gen-
erating a data object aspect field, generating a data object ID,
and generating a segment field regarding the at least a portion
of the data object. For example, the processing module gen-
erates the data object aspect field to include a common data
object aspect of the data object and a previously stored asso-
ciated data object. As another example, the processing mod-
ule generates the data object ID to include a data object ID of
the previously stored associated data object incremented by
one when the data object is a next data object one sequentially
storing a sequence of associated data objects.

The method continues at step 178 where the processing
module outputs the set of encoded data slices for storage in
the DSN based on the set of DSN addresses. Alternatively, or
in addition to, the processing module may store more than the
at least a portion of the data object. When the processing
module stores more than the at least a portion of the data
object, the processing module divides the data object into a
plurality of portions and disperse storage error encoding the
plurality of portions to produce a plurality of sets of encoded
data slices. Next, the processing module generates a plurality
of sets of DSN addresses for the plurality of sets of encoded
data slices. Each DSN address of the plurality of sets of DSN
addresses includes a field referencing the one or more com-
mon data object aspects. Next, the processing module outputs
the plurality of sets of encoded data slices for storage in the
DSN based on the plurality of sets of DSN addresses.

The method continues at step 180 where the processing
module creates a record for the data object in a common data
object aspect database. The record includes a data object
identifier, information (e.g., an aspect identifier, aspect
details, and aspect name, a cross reference to another data
object) regarding the one or more common data object
aspects, and a portions number indicating a number of por-
tions constituting the data object. The common data object
aspect database includes a plurality of records for at least
some of the plurality of data objects.

The method continues at step 182 where the processing
module decodes a decode threshold number of the set of
encoded data slices for each portion of the data object to
produce a reconstructed data object. The method continues at
step 184 where the processing module analyzes the recon-
structed data object to identify additional common data object
aspects. The method continues at step 186 for the processing
module disperse storage error encodes at least a portion of the
reconstructed data object to produce a new set of encoded
data slices. The method continues at step 188 where the
processing module generates a new set of DSN addresses for
the new set of encoded data slices. Each of the new set of DSN
addresses includes a field referencing the one or more com-
mon data object aspects and the additional common data
object aspects. The method continues at step 190 where the
processing module outputs the new set of encoded data slices
for storage in the DSN based on the new set of DSN
addresses.

FIG. 6F is a schematic block diagram of another embodi-
ment of a computing system that includes a computing device
200 and a dispersed storage network (DSN) memory 22. The
computing device 200 may be implemented as one or more of
aretrieving unit, a user device, a dispersed storage processing
(DS) unit, a DS unit, a DS managing unit, and a storage
integrity processing unit. The computing device 200 includes
a DS module 202 and may include a common data aspect
database 106. Alternatively, the common data aspect database
106 is implemented within the DSN memory 22. The DS
module 202 includes a select aspects module 204, an aspect
database module 206, a generate DSN address module 208, a

10

15

20

25

30

35

40

45

50

55

60

65

16

retrieve slices module 210, and a decode module 212. The
system is operable to facilitate retrieval of one or more data
objects 214 from the DSN memory 22. When retrieving one
data object 214 from the DSN memory 22, the facilitating
retrieval includes selecting one or more common data object
aspects 216, accessing the common data aspect database 106
based on the selected common data object aspects 216 to
identify a set of records 218, generating a set of DSN
addresses 220, retrieving at least a decode threshold number
of encoded data slices 222 from the DSN based on the set of
DSN addresses 220, and decoding the least a decode thresh-
old number of encoded data slices 222 to reproduce at least a
portion of a first data object 214.

The select aspects module 204 selects one or more com-
mon data object aspects from a plurality of common data
object aspects to produce selected common data object
aspects 216. The plurality of common data object aspects
includes two or more of: a time window aspect, a destination
identifier (ID) of the data object, a source ID of the data
object, one or more internet protocol (IP) addresses associ-
ated with the data object, a geographic location regarding the
data object, data content information of the data object (e.g.,
names, key words and/or phrases, etc.), data size of the data
object, a data object type (e.g., video, text, bank transaction,
etc.), a capturing unit ID that obtained the data object, and a
vault ID (e.g., includes generation and/or group affiliation).
The selecting includes at least one of receiving a user input,
receiving a request, a lookup, receiving a search parameter,
and utilizing a previously selected data object aspects.

The aspect database module 206 accesses the common data
object aspect database 106 based on the selected common
data object aspects 216 to identify the set of records 218. A
record of the common data object aspect database 106
includes a data object identifier of a data object, information
regarding one or more common data object aspects of the data
object, and a portions number indicating a number of portions
constituting the data object. For example, the aspect database
module 206 searches the common data object aspect database
106 to identify a record associated with data object aspects
that compare favorably (e.g., substantially aligned) to the
selected common data object aspects 216 to produce the set of
records 218.

The generate DSN address module 208 generates the set of
DSN addresses 220 based on one or more of the data object
identifier, the information regarding the one or more common
data object aspects 216, and the portions number of a first
record of the set of records 218. The generate DSN address
module 208 generates a DSN address of the set of DSN
addresses 220 by generating a slice index field based on the
dispersed storage error encoding function, generating a data
object aspect field based on the selected common data object
aspects, generating a data object ID based on the data object
identifier, and generating a segment field based on the por-
tions number. The retrieve slices module 210 retrieves the at
least a decode threshold number of encoded data slices 222
from the DSN memory 22 based on the set of DSN addresses
220. For example, the retrieve slices module 200 and gener-
ates at least a decode threshold number of read slice requests
that includes the set of DSN addresses 220, sends the at least
a decode threshold number of read slice requests to the DSN
memory 22, and receives the least a decode threshold number
of encoded data slices 222. The decode module 212 decodes
the least a decode threshold number of encoded data slices
222 in accordance with a dispersed storage error encoding
function to reproduce at least a portion of the first data object
214.

US 9,274,864 B2

17

The system may retrieve more than the least a portion of the
first data object. When the system retrieves more than the at
least a portion of the first data object, the generate DSN
address module 208 generates a plurality of sets of DSN
addresses based on the data object identifier, the information
regarding the one or more common data object aspects, and
the portions number. For example, the generate DSN address
module 208 generates the plurality of sets of DSN addresses
to include a plurality of segment numbers in accordance with
the portions number (e.g., all segment numbers). Next, the
retrieve slices module 210 retrieves at least a decode thresh-
old number of encoded data slices from the DSN memory 22
for each of the plurality of sets of DSN addresses. Next, the
decode module 212 decodes the least a decode threshold
number of encoded data slices from the DSN for each of the
plurality of sets of DSN addresses in accordance with the
dispersed storage error encoding function to reproduce a plu-
rality of portions (e.g., all data segments) of the first data
object. The decode module 212 reproduces the first data
object from the plurality of portions of the first data object.
For example, the decode module 212 aggregates the plurality
of portions of the first data object to reproduce the first data
object.

The system may retrieve more than one data object. When
the system retrieves more than one data object, the generate
DSN address module 208 generates a second set of DSN
addresses based on the data object identifier, the information
regarding the one or more common data object aspects, and
the portions number of a second record of the set of records.
For example, the generate DSN address module 208 incre-
ments the value of the data object identifier to produce a
second data object identifier utilized in generating the second
set of DSN addresses. Next, the retrieve slices module 210
retrieves at least a decode threshold number of second
encoded data slices from the DSN memory 22 based on the
second set of DSN addresses. The decode module 212
decodes the least a decode threshold number of second
encoded data slices in accordance with the dispersed storage
error encoding function to reproduce at least a portion of a
second data object.

FIG. 6G is a flowchart illustrating an example of retrieving
data objects having a common aspect. The method begins at
step 230 where a processing module (e.g., of a retrieving unit)
selects one or more common data object aspects from a plu-
rality of common data object aspects to produce selected
common data object aspects. The method continues at step
232 where the processing module accesses a common data
object aspect database based on the selected common data
object aspects to identify a set of records. A record of the
common data object aspect database includes a data object
identifier of a data object, information regarding one or more
common data object aspects of the data object, and a portions
number indicating a number of portions constituting the data
object.

The method continues at step 234 where the processing
module generates a set of dispersed storage network (DSN)
addresses based on the data object identifier, the information
regarding the one or more common data object aspects, and
the portions number of a first record of the set of records. The
generating a DSN address of the set of DSN addresses
includes generating a slice index field based on the dispersed
storage error encoding function, generating a data object
aspect field based on the selected common data object
aspects, generating a data object ID based on the data object
identifier, and generating a segment field based on the por-
tions number. The method continues at step 236 where the
processing module retrieves at least a decode threshold num-

10

15

20

25

30

35

40

45

50

55

60

65

18

ber of encoded data slices from the DSN based on the set of
DSN addresses. The method continues at step 238 where the
processing module decodes the least a decode threshold num-
ber of encoded data slices in accordance with a dispersed
storage error encoding function to reproduce at least a portion
of a first data object.

The processing module may function to retrieve all por-
tions of the first data object. When retrieving all portions, the
method continues at step 240 where the processing module
generates a plurality of sets of DSN addresses based on the
data object identifier, the information regarding the one or
more common data object aspects, and the portions number
(e.g., for all data segments). The method continues at step 242
where the processing module retrieves at least a decode
threshold number of encoded data slices from the DSN for
each of the plurality of sets of DSN addresses. The method
continues at step 244 where the processing module decodes
the at least a decode threshold number of encoded data slices
from the DSN for each of the plurality of sets of DSN
addresses in accordance with the dispersed storage error
encoding function to reproduce a plurality of portions of the
first data object. The method continues at step 246 where the
processing module reproduces the first data object from the
plurality of portions of the first data object.

The processing module may function to retrieve a portion
of more than one data object. When retrieving the portion of
more than one data object, the method continues at step 248
where the processing module generates a second set of DSN
addresses based on the data object identifier (e.g., increment-
ing a previous data object identifier by one), the information
regarding the one or more common data object aspects, and
the portions number of a second record of the set of records.
The method continues at step 250 where the processing mod-
ule retrieves at least a decode threshold number of second
encoded data slices from the DSN based on the second set of
DSN addresses. The method continues at step 252 where the
processing module decodes the least a decode threshold num-
ber of second encoded data slices in accordance with the
dispersed storage error encoding function to reproduce at
least a portion of a second data object.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., an item includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of

US 9,274,864 B2

19

separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-
mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-

10

15

20

25

30

35

40

45

50

55

60

65

20

nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

While the transistors in the above described figure(s) is/are
shown as field effect transistors (FETs), as one of ordinary
skill in the art will appreciate, the transistors may be imple-
mented using any type of transistor structure including, but
not limited to, bipolar, metal oxide semiconductor field effect
transistors (MOSFET), N-well transistors, P-well transistors,
enhancement mode, depletion mode, and zero voltage thresh-
old (VT) transistors.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. Forinstance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module, a functional block, hardware, and/or soft-
ware stored on memory for performing one or more functions
as may be described herein. Note that, if the module is imple-
mented via hardware, the hardware may operate indepen-
dently and/or in conjunction software and/or firmware. As
used herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method for storing large amounts of data, the method
comprises:

obtaining, by a processing module of a computing device,

a plurality of data objects for storage in a dispersed
storage network (DSN);

determining, by the processing module, that two data

objects of the plurality of data objects have one or more

US 9,274,864 B2

21

common data object aspects wherein each of the two
data objects includes a plurality of data segments;

disperse storage error encoding, by the processing module,
the plurality of data segments of a first data object of the
two data objects to produce a first plurality of sets of
encoded data slices, wherein a data segment of the plu-
rality of data segments is dispersed storage error
encoded into a set of encoded data slices of the plurality
of sets of encoded data slices and wherein a decode
threshold number of encoded data slices of the set of
encoded data slices in needed to recover the data seg-
ment;

generating, by the processing module, a first plurality of
sets of DSN addresses for the first plurality of sets of
encoded data slices, wherein DSN addresses of the first
plurality of sets of DSN addresses includes a field ref-
erencing the one or more common data object aspects;

disperse storage error encoding, by the processing module,
the plurality of data segments of a second data object of
the two data objects to produce a second plurality of sets
of encoded data slices;

generating, by the processing module, a second plurality of
sets of DSN addresses for the second plurality of sets of
encoded data slices, wherein DSN addresses of the sec-
ond plurality of sets of DSN addresses includes the field
referencing the one or more common data object
aspects; and

outputting the first and second plurality of sets of encoded
data slices for storage in the DSN based on the first and
second plurality of sets of DSN addresses.

2. The method of claim 1 further comprises:

creating a record for the first data object in a common data
object aspect database, wherein the record includes a
data object identifier, information regarding the one or
more common data object aspects, and a portions num-
ber indicating a number of portions constituting the first
data object, wherein the common data object aspect
database includes a plurality of records for at least some
of the plurality of data objects.

3. The method of claim 1 further comprises:

the one or more common data object aspects is one of a
plurality of common data object aspects that includes
two or more of: a time window aspect, a destination
identifier (ID) of the data object, a source ID of the data
object, one or more internet protocol (IP) addresses
associated with the data object, a geographic location
regarding the data object, data content information of the
data object, data size of the data object, a data object
type, a capturing unit ID that obtained the data object,
and a vault ID.

4. The method of claim 1, wherein generating a DSN

address of the first plurality of sets of DSN addresses com-
prises:

generating a slice index field;

generating a data object aspect field;

generating a data object ID; and

generating a segment field regarding the at least a portion
of' the first data object.

5. The method of claim 1 further comprises:

decoding a decode threshold number of the first and second
plurality of sets of encoded data slices for each data
segment of the first and second data objects to produce a
reconstructed data object;

analyzing the reconstructed data object to identify addi-
tional common data object aspects of the reconstructed
data object with a third data object of the plurality of data
objects;

25

30

35

40

45

50

55

22

disperse storage error encoding at least a portion of the
reconstructed data object to produce a new set of
encoded data slices;

generating a new set of DSN addresses for the new set of
encoded data slices, wherein each of the new set of DSN
addresses includes a field referencing the one or more
common data object aspects and the additional common
data object aspects; and

outputting the new set of encoded data slices for storage in
the DSN based on the new set of DSN addresses.

6. The method of claim 1 further comprises:

dividing the first data object into a plurality of portions;

disperse storage error encoding the plurality of portions to
produce another plurality of sets of encoded data slices;

generating another plurality of sets of DSN addresses for
the other plurality of sets of encoded data slices, wherein
DSN addresses of the other plurality of sets of DSN
addresses includes a field referencing the one or more
common data object aspects; and

outputting the other plurality of sets of encoded data slices
for storage in the DSN based on the other plurality of sets
of DSN addresses.

7. A method for retrieving data objects having a common

aspect, the method comprises:

selecting, by a processing module of a computing device,
one or more common data object aspects from a plurality
of common data object aspects to produce selected com-
mon data object aspects;

accessing, by the processing module, a common data
object aspect database based on the selected common
data object aspects to identify a set of records, wherein a
record of the common data object aspect database
includes a data object identifier of a data object, infor-
mation regarding one or more common data object
aspects of the data object, and a portions number indi-
cating a number of portions constituting the data object;

generating, by the processing module, a first plurality of
sets of dispersed storage network (DSN) addresses
based on a first data object identifier, the information
regarding the one or more common data object aspects,
and the portions number of a first record of the set of
records;

retrieving, by the processing module, at least a decode
threshold number of encoded data slices of a first plu-
rality of sets of encoded data slices from the DSN based
on the first plurality of sets of DSN addresses;

decoding, by the processing module, the at least a decode
threshold number of encoded data slices of the first
plurality of sets of encoded data slices in accordance
with a dispersed storage error encoding function to
reproduce a plurality of portions of a first data object;

generating, by the processing module, a second plurality of
sets of dispersed storage network (DSN) addresses
based on a second data object identifier, the information
regarding the one or more common data object aspects,
and the portions number of a second record of the set of
records;

retrieving, by the processing module, at least a decode
threshold number of encoded data slices of a second
plurality of sets of encoded data slices from the DSN
based on the second plurality of sets of DSN addresses;
and

decoding, by the processing module, the at least a decode
threshold number of encoded data slices of the second
plurality of sets of encoded data slices in accordance
with a dispersed storage error encoding function to
reproduce a plurality of portions of a second data object.

US 9,274,864 B2

23

8. The method of claim 7, wherein the plurality of common

data object aspects comprises two or more of:

a time window aspect, a destination identifier (ID) of the
data object, a source 1D of the data object, one or more
internet protocol (IP) addresses associated with the data
object, a geographic location regarding the data object,
data content information of the data object, data size of
the data object, a data object type, a capturing unit ID
that obtained the data object, and a vault ID.

9. The method of claim 7, wherein generating a DSN

address of the first and second plurality of sets of DSN
addresses comprises:

generating a slice index field based on the dispersed storage
error encoding function;
generating a data object aspect field based on the selected
common data object aspects;
generating a data object ID based on the data object iden-
tifier; and
generating a segment field based on the portions number.
10. A capturing unit comprises:
a first module, when operable within a computing device,
causes the computing device to obtain a plurality of data
objects for storage in a dispersed storage network
(DSN);
a second module, when operable within the computing
device, causes the computing device to determine that
two data objects of the plurality of data objects have one
ormore common data object aspects wherein each of the
two data objects includes a plurality of data segments;
a third module, when operable within the computing
device, causes the computing device to:
disperse storage error encode the plurality of data seg-
ments of a first data object of the two data objects to
produce a first plurality of sets of encoded data slices,
wherein a data segment of the plurality of data seg-
ments is dispersed storage error encoded into a set of
encoded data slices of the first plurality of sets of
encoded data slices and wherein a decode threshold
number of encoded data slices of the set of encoded
data slices in needed to recover the data segment; and

disperse storage error encode the plurality of data seg-
ments of a second data object of the two data objects
to produce a second plurality of sets of encoded data
slices;
a fourth module, when operable within the computing
device, causes the computing device to:
generate a first plurality of sets of DSN addresses for the
first plurality of sets of encoded data slices, wherein
DSN addresses of the first plurality of sets of DSN
addresses includes a field referencing the one or more
common data object aspects; and

generate a second plurality of sets of DSN addresses for
the second plurality of sets of encoded data slices,
wherein DSN addresses of the second plurality of sets
of DSN addresses includes the field referencing the
one or more common data object aspects; and

a fifth module, when operable within the computing
device, causes the computing device to output the first
and second plurality of sets of encoded data slices for
storage in the DSN based on the first and second plural-
ity of sets of DSN addresses.

11. The capturing unit of claim 10 further comprises:

a sixth module, when operable within the computing
device, causes the computing device to create a record
for the first data object in a common data object aspect
database, wherein the record includes a data objectiden-
tifier, information regarding the one or more common

20

25

30

40

45

50

24

data object aspects, and a portions number indicating a
number of portions constituting the first data object,
wherein the common data object aspect database
includes a plurality of records for at least some of the
plurality of data objects.

12. The capturing unit of claim 10 further comprises:

the one or more common data object aspects is one of a
plurality of common data object aspects that includes
two or more of: a time window aspect, a destination
identifier (ID) of the data object, a source ID of the data
object, one or more internet protocol (IP) addresses
associated with the data object, a geographic location
regarding the data object, data content information of the
data object, data size of the data object, a data object
type, a capturing unit ID that obtained the data object,
and a vault ID.

13. The capturing unit of claim 10, wherein the fourth

module, when operable, generates a DSN address of the first
plurality of sets of DSN addresses by:

generating a slice index field;
generating a data object aspect field;
generating a data object ID; and
generating a segment field regarding the at least a portion
of the first data object.
14. The capturing unit of claim 10 further comprises:
a sixth module, when operable within the computing
device, causes the computing device to decode a decode
threshold number of the first and second plurality of sets
of encoded data slices for each portion of the first and
second data objects to produce a reconstructed data
object;
the second module is further operable to analyze the recon-
structed data object to identify additional common data
object aspects of the reconstructed data object with a
third data object of the plurality of data objects;
the third module is further operable to disperse storage
error encode at least a portion of the reconstructed data
object to produce a new set of encoded data slices;
the fourth module is further operable to generate a new set
of DSN addresses for the new set of encoded data slices,
wherein each of the new set of DSN addresses includes
a field referencing the one or more common data object
aspects and the additional common data object aspects;
and
the fitth module is further operable to output the new set of
encoded data slices for storage in the DSN based on the
new set of DSN addresses.
15. The capturing unit of claim 10 further comprises:
the third module is further operable to:
divide the first data object into a plurality of portions;
and

disperse storage error encode the plurality of portions to
produce another plurality of sets of encoded data
slices;

the fourth module is further operable to generate another
plurality of sets of DSN addresses for the other plurality
of sets of encoded data slices, wherein DSN addresses of
the other plurality of sets of DSN addresses includes a
field referencing the one or more common data object
aspects; and

the fifth module is further operable to output the other
plurality of sets of encoded data slices for storage in the
DSN based on the other plurality of sets of DSN
addresses.

16. A retrieving unit comprises:

a first module, when operable within a computing device,
causes the computing device to select one or more com-

US 9,274,864 B2

25

mon data object aspects from a plurality of common data
object aspects to produce selected common data object
aspects;
second module, when operable within the computing
device, causes the computing device to access acommon
data object aspect database based on the selected com-
mon data object aspects to identify a set of records,
wherein a record of the common data object aspect data-
base includes a data object identifier of a data object,
information regarding one or more common data object
aspects of the data object, and a portions number indi-
cating a number of portions constituting the data object;
third module, when operable within the computing
device, causes the computing device to:
generate a first plurality of sets of dispersed storage
network (DSN) addresses based on a first data object
identifier, the information regarding the one or more
common data object aspects, and the portions number
of a first record of the set of records; and
generate a second plurality of sets of dispersed storage
network (DSN) addresses based on a second data
object identifier, the information regarding the one or
more common data object aspects, and the portions
number of a second record of the set of records;
fourth module, when operable within the computing
device, causes the computing device to:
retrieve at least a decode threshold number of encoded
data slices of a first plurality of sets of encoded data
slices from the DSN based on the first plurality of sets
of DSN addresses; and
retrieve at least a decode threshold number of encoded
data slices of'a second plurality of sets of encoded data
slices from the DSN based on the second plurality of
sets of DSN addresses;

20

30

26

a fifth module, when operable within the computing

device, causes the computing device to:

decode the at least a decode threshold number of
encoded data slices of the first plurality of sets of
encoded data slices in accordance with a dispersed
storage error encoding function to reproduce a plural-
ity of portions of a first data object; and

decode the at least a decode threshold number of
encoded data slices of the second plurality of sets of
encoded data slices in accordance with a dispersed
storage error encoding function to reproduce a plural-
ity of portions of a second data object.

17. The retrieving unit of claim 16, wherein the plurality of
common data object aspects comprises two or more of:
a time window aspect, a destination identifier (ID) of the

data object, a source 1D of the data object, one or more
internet protocol (IP) addresses associated with the data
object, a geographic location regarding the data object,
data content information of the data object, data size of
the data object, a data object type, a capturing unit ID
that obtained the data object, and a vault ID.

18. The retrieving unit of claim 16, wherein the third mod-
ule is further operable to generate a DSN address of the first
and second plurality of sets of DSN addresses by:

generating a slice index field based on the dispersed storage

error encoding function;

generating a data object aspect field based on the selected

common data object aspects;

generating a data object ID based on the data object iden-

tifier; and

generating a segment field based on the portions number.

#* #* #* #* #*

